
Evaluating the Use of NFTs using Event Tickets

Johnny O’Keeffe

Faculty of Science and Engineering

Department of Computer Science and Information Systems

University of Limerick

Submitted to the University of Limerick for the degree of

Final Year Project 2022

mailto: email@email.com
http://www.ul.ie
http://www.csis.ul.ie
http://www.ul.ie

1. Supervisor: Dr. Andrew LeGear

Horizon Fintex

University of Limerick

Ireland

2. Supervisor: Prof. Jim Buckley

Department of Computer Science and Information Systems

Limerick

Ireland

ii

Abstract

In the past year, Non-Fungible Tokens (NFTs) based on the blockchain

have taken the world by storm. However, NFTs are often misunder-

stood. People believe they are artworks that sell for incomprehensible

amounts of money. Others believe it is a scam, and retrospectively

that might be the case. However, What is not highlighted is the

groundbreaking blockchain technology that NFTs are using that has

the potential to revolutionise digital ownership.

The purpose of this paper is to provide the reader with an insight into

NFT technology from a non-blockchain perspective by investigating

how NFTs can be utilized to address prominent issues in an every-

day domain such as fraud in the ticketing industry. To accomplish

this, we created our own event ticketing solution using NFTs as event

tickets and an accompanying user interface detailing each step in the

research, design and implementation of this novel solution. This paper

aims to provide the reader with a better understanding of the differ-

ences between current technology and blockchain technology, what is

involved in development using the blockchain, and how the blockchain

can be used to upgrade and resolve issues in the ticketing industry.

Declaration

I herewith declare that I have produced this paper without the pro-

hibited assistance of third parties and without making use of aids

other than those specified; notions taken over directly or indirectly

from other sources have been identified as such. This paper has not

previously been presented in identical or similar form to any other

Irish or foreign examination board.

The thesis work was conducted from year to year under the supervi-

sion of Dr. Andrew Le Gear and Prof. Jim Buckley at University of

Limerick.

Limerick, 2022

Acknowledgements

Thank you to my supervisors, Dr, Andrew Le Gear and Prof. Jim

Buckley, for providing continuous guidance and feedback throughout

this project.

This FYP is dedicated to Lexie.

Contents

List of Figures vi

1 Introduction 1

1.1 Web3 Components . 2

1.1.1 Blockchain . 2

1.1.2 Addresses . 4

1.1.3 Wallets . 4

1.1.4 Non Fungible Tokens . 5

1.1.5 Smart Contracts . 5

1.2 Aims and Objectives . 6

1.3 Methodology . 6

2 Research 7

2.1 Background Research . 7

2.2 Previous Examples of Blockchain Tickets 7

2.2.1 2018 FIFA World Cup . 7

2.2.2 UEFA EURO 2020 . 8

2.3 Companies making Blockchain Tickets 8

2.4 GET Protocol . 8

2.5 Other Companies . 9

2.6 Summary . 9

3 Design 10

3.1 Requirements . 10

3.1.1 Functional . 10

iii

CONTENTS

3.1.1.1 User Stories . 11

3.1.1.2 Use Case Diagram 12

3.1.2 Non-Functional . 13

3.2 Choice of Blockchain . 14

3.3 Proposed Solution . 14

3.4 Metadata . 19

3.5 Dapp Solution . 20

3.6 Development Environment . 20

4 Implementation 21

4.1 Smart Contract Setup . 21

4.1.1 Hardhat.js . 21

4.1.1.1 Setting up a Blockchain Wallet and Address . . . 22

4.1.2 . 23

4.2 Smart Contract Setup . 26

4.2.1 Smart Contracts Wizard 26

4.2.2 Verifying Ownership . 28

4.2.3 Metadata . 29

4.2.4 Testing the Smart Contract 30

4.2.5 Deploying the Smart Contract 32

4.3 Dapp Implementation . 34

4.3.1 Setting up the Development Environment 34

4.3.2 Authenticating the User 35

4.3.3 Handling Changes . 37

4.3.4 Purchasing a Ticket . 38

4.3.5 Proving Ownership of a Ticket 41

4.3.6 Viewing Event Logs . 43

4.3.7 Deploying the Dapp . 44

5 Walkthrough 45

5.1 Minimal Solution . 45

5.1.1 Purchasing a ticket . 45

5.1.2 Validating the Ticket . 46

5.1.3 Trading the Ticket . 48

iv

CONTENTS

5.2 Dapp Solution . 48

5.2.1 Purchasing the ticket . 48

5.2.2 Validating the Ticket . 50

5.2.3 Trading the Ticket . 51

6 Evaluation 52

6.1 Ease of Use . 52

6.1.1 Pre-requisites . 52

6.1.2 Purchasing the ticket . 53

6.1.3 Trading the ticket . 53

6.1.4 Verifying the Ticket . 53

6.1.5 Speed . 54

6.2 Transaction Costs . 54

6.2.1 NFT Solution . 54

6.2.2 Current Solution . 56

6.3 Development Time . 56

7 Conclusions and Future Directions 58

7.1 Conclusion . 58

7.2 Future Work . 59

7.2.1 Use Email as a wallet . 59

7.2.2 Ticket Purchasing . 59

7.2.3 Verifying the Ticket . 59

7.2.4 Regulated Marketplace . 60

References 61

v

List of Figures

1.1 Why is it called Blockchain? (BlockchainHub 2022) 3

1.2 Metamask . 4

3.1 User Stories . 12

3.2 Use Case Diagram . 13

3.3 Flow chart of the Purchasing and Trading Requirements 16

3.4 Use Case Diagram . 18

4.1 Vscode Settings . 22

4.2 Metamask connected network . 24

4.3 Metamask available networks list 24

4.4 Metamask adding network . 25

4.5 Metamask available networks list with Mumbai Testnet 25

4.6 OpenZeppelin Smart Contracts Wizard 27

4.7 proveOwnership . 28

4.8 OwnershipApprovalRequest . 29

4.9 imports . 29

4.10 tokenURI method . 30

4.11 Test code . 31

4.12 Deploy code . 33

4.13 hardhat.config.js file . 34

4.14 providerOptions . 35

4.15 Authentication code . 36

4.16 Handling Changes code . 38

4.17 ABI . 39

vi

LIST OF FIGURES

4.18 purchaseNFT . 40

4.19 getNFTs . 42

4.20 Event Logs Code . 43

5.1 Connecting to PolygonScan . 46

5.2 Confirming the Transaction . 46

5.3 proveOwnership Method on PolygonScan 47

5.4 Smart Contract Event Logs . 47

5.5 Purchase Ticket page . 49

5.6 Transaction Started . 49

5.7 Transaction Sent . 49

5.8 Transaction Confirmed . 50

5.9 Transaction Error . 50

5.10 Event Logs . 51

5.11 Event Logs Highlighted . 51

6.1 hardhat-gas-reporter plugin . 55

vii

1

Introduction

Tickets and assigned seating for events were practices that, according to archae-

ological evidence, were invented by the Romans during the first century (James

T. Reese and Thomas 2013). The ticketing industry has undergone significant

transformations since these times, particularly with the advent of the internet as

a ticket purchasing medium and as mobile tickets have seen significant uptake.

But this has not been without its problems. Ticketmaster recently introduced a

new technology, SafeTix, as part of its efforts to combat fraudsters and scalpers

(PYMNTS 2019). Despite these efforts, issues like this still exist within the in-

dustry.

In 2018, approximately 12 percent of people reported purchasing concert tick-

ets online which turned out to be scams (Leonhardt 2018). A more recent report

from June 2021 by Action Fraud which is the UK’s national reporting centre for

fraud and cyber-crime received 374 reports of ticket fraud with victims report-

edly losing over £200,000 pounds in March alone (Actionfraud 2021). Considering

these figures, we can start to understand the magnitude of the ticket industry’s

problems. As technology remains the same, cybercriminals become more and

more creative in their efforts to extort billions of dollars from victims desperate

to attend events. During COVID-19, people are more inclined to try to ob-

tain concert tickets since the number of events and corresponding attendees is

limited, creating a situation in which fraudsters can take even more advantage.

Non-Fungible Tokens (NFTs), created on a blockchain, provide a solution towards

ending these problems by being verifiably original, tracking provenance, creating

1

1. INTRODUCTION

a secure marketplace, and enhancing the experience for the ticketing industry

with added benefits such as being able to communicate with all ticket holders

and change event details on the fly. This project is novel in that it will derive

an openly-available NFT solution for this problem domain, thus illustrating how

this can be done.

1.1 Web3 Components

Web2 refers to the version of the internet most of us know today; An internet

dominated by companies that provide services in exchange for personal data.

Web3, in the context of Ethereum, refers to decentralised apps that run on the

blockchain. These are apps that allow anyone to participate without monetising

their personal data (Ethereum 2022a). In other words, Web3 refers to apps built

using blockchain technology, and Web2 refers to the current technology that we

use today. This section aims to present the reader different components that

constitute Web3 and are essential to understanding the paper going forward.

But more Web3 components will be revealed throughout the paper.

1.1.1 Blockchain

A blockchain refers to a public distributed ledger that is run by a peer to peer

network of computers (see figure 1.1). Each of the computers connected holds an

identical copy of the ledger, which forms a consensus of the state of the blockchain

to verify the validity of cryptocurrency transactions, with rewards for providing

computing power to validate the transactions. Transactions are write methods

executed on the blockchain, like sending cryptocurrency to another address.

Blockchains are immutable by default meaning that once something is recorded

on a blockchain it cannot be deleted, this is useful as you have access to all the

activity on a blockchain to help in tracing transactions to see the source of where

a particular asset or NFT came from, and assets on the blockchain cannot be

deleted so they can be stored them safely. Blockchains are secure as it is impossi-

ble to tamper with them due to this design. Verifiability and immutability make

a blockchain system ideal for storing digital assets.

2

1.1 Web3 Components

Bitcoin’s blockchain is built for the sole purpose of sending and receiving

bitcoins, a digital currency known as cryptocurrency. Ethereum’s blockchain im-

plementation is similar except that it uses their own cryptocurrency called Ether

and it has the addition of smart contracts, which is code hosted on the blockchain.

Ethereum allows for creating other cryptocurrencies, otherwise known as tokens,

and NFTs, through their smart contracts (BlockchainHub 2022).

Figure 1.1: Why is it called Blockchain? (BlockchainHub 2022)

3

1. INTRODUCTION

1.1.2 Addresses

Email addresses are used to determine where to send text or files, while Ethereum

addresses determine where to send Ethereum transactions (Komodo 2022). Every

account is defined by a pair of keys, a private key and a public key. Accounts

are indexed by their address which is derived from the public key by taking the

hash of the last 20 bytes (Ethereum 2022b). A private key is a 256-bit number

which is like a username and password to an account. A private key generates

its corresponding public key, and the address is a human-readable format of the

public key. Using cryptography, the private key is used to sign transactions,

which can verify that a user owns a private key to a particular public key without

actually exposing the user’s private key (BlockchainHub 2022)

1.1.3 Wallets

A blockchain wallet is a digital wallet that allows users to interact with the

blockchain by controlling the use of the public key and a private key. An example

of a wallet provider would be Metamask (Metamask 2022a) (See figure 1.2). A

user can import their blockchain account by entering their private key into the

Metamask app, stored locally on the device. The wallet allows users to view their

cryptocurrencies and send transactions.

Figure 1.2: Metamask

4

1.1 Web3 Components

1.1.4 Non Fungible Tokens

NFTs are a technology built on a blockchain that can prove ownership of digital

assets such as collectables, artwork, in-game items and, in this case, event or

concert tickets. Fungible means something interchangeable and will hold the

same value when exchanged for something within its asset class, like gold, dollars,

Bitcoin. For example, trading one bitcoin for another has the same total value.

Non-Fungible is an asset that has unique attributes that make it different from

other assets in its asset class like a painting, theatre ticket or a house. A theatre

ticket would be non-fungible as trading it for another ticket will not be the same

as it represents a different seat and may have a different value even though it is

in the same asset class. A token is a digital certificate stored on a blockchain,

which allows these digital assets to be publicly verifiable. As a result of NFTs

utilising the blockchain, they inherit all the features of the blockchain of being

verifiably original and more.

1.1.5 Smart Contracts

NFTs are built using Smart Contracts, which are programs stored on a blockchain

that enable the execution of methods that read and write data on a blockchain.

Smart contracts can be thought of as a backend API system. The program’s

current state at any moment in time is stored on-chain. For example, for event

tickets, the smart contract would provide actions like allowing an event organiser

to create new tickets, store what addresses own what ticket and allow the trans-

ferring of tickets. Also provided is the metadata for the ticket, which includes

the ticket’s name, image, and description.

Finally, any other business logic can be added, like specifying the maximum

number of tickets. NFTs, adhere to the ERC-721 standard, which is essentially

an interface that defines a set of rules for what methods or code must be included

in the smart contract for it to be classified as a valid ERC-721 NFT. ERC-20 is

another standard that is used to create tokens on the Ethereum blockchain like

Chainlink (LINK), Tether (USDT) and Shiba Inu (SHIB). NFTs can be thought

of like these tokens but having extra methods to attach information within the

token. ERC-721 is helpful as it provides a standard for all NFTs, making it easier

5

1. INTRODUCTION

for developers when creating NFTs as they know what they have to include in

the code to make it an NFT. The standard also benefits developers integrating

NFTs as they know what methods to call, allowing tools to be built for all NFTs

using the ERC-721 standard like marketplaces.

1.2 Aims and Objectives

The main aims and objectives of this research are to:

1. Research current blockchain ticket solutions.

2. Explore the technology involved in an NFT ticketing solution and identify-

ing improvements that can be made.

3. Evaluate and justify the best technology for NFT tickets.

4. Implement our own NFT ticket solution with identified improvements.

5. Create an app as a proof of concept demonstration of the proposed solution.

6. Evaluate the NFT ticket solution .

1.3 Methodology

To evaluate the use of NFTs as event tickets, we will first research current work

done on NFT and blockchain ticketing, develop a design and then implement

our own ticketing solution. We will then evaluate the solution by comparing

the different characteristics involved in ticketing technology. We will also create

an in-depth walkthrough of using our solution compared to current solutions to

make a further evaluation, and finally discuss improvements and future work to

be done with the solution.

6

2

Research

2.1 Background Research

The following research is information I have found where people discuss a com-

pany or event using blockchain tickets however in some cases it is not clear if

what was described was implemented as a solution or if the implementation was

successful. The implementation is also not open, in constrast to this paper, which

hopes to provide an insight for future researchers in the area.

2.2 Previous Examples of Blockchain Tickets

2.2.1 2018 FIFA World Cup

Research shows that blockchain tickets were around back in 2018 (Dailyhodl

2018). The article describes that a company named BlocSide Sports, using

the Aventus Protocol, was testing blockchain tickets for the 2018 World Cup.

Whereas another article discusses that another company was testing a blockchain-

based ticketing solution for the 2018 FIFA World Cup (Ethereum 2022c). This

article describes that they are issuing tickets on the Ethereum blockchain using

ERC-875, which is a token that supports batching and native atomic swaps, has

since been withdrawn (Ethereum 2022c). A tweet (Twitter 2022) from Victor

Zhang, who is affiliated with AlphaWallet describes that they implemented the

FIFA World Cup 2018 NFT ticket provides screenshots within the tweet that

7

2. RESEARCH

shows an app with an NFT ticket, but no other implementation details are re-

leased.

2.2.2 UEFA EURO 2020

UEFA for the 2020 euros, sold mobile tickets along with paper tickets on their

blockchain-based mobile ticketing system (Dailyhodl 2018). This article describes

that AlphaWallet and Victor Zhang, who was a part of the 2018 FIFA World

Cup blockchain tickets, were also used for the UEFA blockchain tickets (UEFA

2020). However, Secutix, a ticketing company who has their app called TIXnGo

published an article stating that they worked on the UEFA EURO 2020 ticketing

solution and described details of what their partnership involved (Secutix 2022).

The research is indeed confusing, and it is difficult to determine the validity of

the research fully as the blockchain side of the tickets appear to be abstracted

and mentioned briefly, and there is no way to track that these solutions were

implemented since we do not have access to the blockchain information..

2.3 Companies making Blockchain Tickets

The following are companies that are involved in blockchain tickets and any in-

formation available regarding their implementation.

2.4 GET Protocol

GET protocol is an example of a company that does NFT tickets (GET 2022).

They offer a white label solution for ticket providers to implement their NFT tick-

ets for events. A company that utilises this technology is GUTS Tickets (GUTs

2022). GET protocol sells NFT tickets using the Polygon blockchain. They have

provided an exciting website, where statistics and activity using the GET pro-

tocol can be viewed like tickets sold and recent tickets sold using their explorer

(GET 2022). https://explorer.get-protocol.io/ This tool allows for viewing all

the transactions that are being executed using GET NFT tickets. We can view

these transactions on the PolygonScan blockchain explorer and visit the smart

8

2.5 Other Companies

contract address. GET protocol offers documentation, blogs, and the blockchain

side of their code openly available.

2.5 Other Companies

Other companies that offer blockchain solutions are TIXnGO (TIXNGO 2022)

which is made by Secutix, the company that was involved in the UEFA EURO

2020 tickets. Bam (BAM 2022) is another company that is first to appear when

searching for NFT tickets. However, they only have a landing page showing what

their ticketing solution involves, but no more information than that. Furthermore,

Oveit (Oveit 2022) seems to provide a working solution for NFT tickets built on

Polygon. Oveit is a company that already allows the sale of tickets online and to

manage events with its event management system. However, they have integrated

NFT tickets as a solution too.

2.6 Summary

The solution that would be most similiar is the solution provided by GET Pro-

tocol, however our solution will provide extensive detail on the technology and

justification of choices. Furthermore, the solution is more catered for people, who

are unfamiliar with blockchain technologies, and highlights how such a system can

be created from design to implementation. By breaking down every step in the

process, it can bring more awareness to the technology, and show how people can

implement their own solutions.

9

3

Design

The goal of the design chapter is to create a minimal viable product for an NFT

event ticketing system and to create a deeper understanding in what is involved

in developing such a system. The solution aims to select the Web3 approach for

all requirements and evaluate these choices in the evaluation chapter.

3.1 Requirements

The first step of the design process was to figure out the requirements for the

solution. The requirements reveal the scope of the solution for a minimal, high-

level implementation of NFT event tickets. Any NFT ticket solution, regardless

of complexity, would be derived from the requirements as outlined. The require-

ments were drawn from personal experiences of attending events. The process

of attending an event could be broken down into several requirements. For the

requirements, a bouncer would refer to someone or something that validates the

ticket at the venue and grants entry if the ticket is deemed valid—for example, a

human bouncer or a turnstile gate.

3.1.1 Functional

• Users shall be allowed to purchase tickets.

• Users shall be allowed to trade their tickets with other users.

10

3.1 Requirements

• Bouncers shall be allowed to validate that a user owns a ticket for a partic-

ular event.

3.1.1.1 User Stories

Based on the requirements, the user stories shown in figure 3.1 were created.

11

3. DESIGN

Figure 3.1: User Stories

3.1.1.2 Use Case Diagram

The use case diagram was derived from the user stories, which helps in highlight-

ing the actors involved in the solution and their responsibilities to aid in further

visualising the scope of the solution.

12

3.1 Requirements

Figure 3.2: Use Case Diagram

3.1.2 Non-Functional

• The system shall be secure to prevent fraud and theft.

• The system shall be extensible so that new or modified code shall not affect

existing code.

• The system shall be reliable to ensure all users can attend events without

issues.

• The system should be performant in that throughput should not cause

delays at venue doors.

13

3. DESIGN

3.2 Choice of Blockchain

The Ethereum blockchain popularised NFTs. The Ethereum blockchain has sup-

ported NFTs the longest and has extensive tooling and support for development.

While other blockchains exist that support NFTs, Ethereum has been chosen

as the solution for its ecosystem of resources for blockchain development, and

Ethereum fulfils the requirements. One issue of Ethereum is its slow throughput.

Transactions are stored in groups named blocks. The network validates these

blocks to ensure the validity of the transactions. The time it takes to validate

these blocks represents how long it takes for a transaction to be published on the

blockchain. Between January 1-7, 2022, the average block time on Ethereum was

13.2 seconds, with roughly 188 transactions per block. On Polygon, the average

block time during the same period was 2.3 seconds, with 48 transactions on aver-

age per block. This means, in the same 13.2 seconds, Polygon was able to confirm

on average 271 transactions—44% more transactions than the Ethereum network

(Blocknative 2022). Polygon is a “layer two” or “sidechain” scaling solution that

runs alongside the Ethereum blockchain — allowing for speedy transactions and

low fees (Coinbase 2022). Purchasing the ticket, trading the ticket and validating

the ticket are all transactions that need to be recorded on the blockchain with the

current solution. Polygon inherits all the features of Ethereum, except they use

their own scaling solution. Their solution is still involving the Ethereum ecosys-

tem; the same tools, smart contracts and resources can be used. 2.3 seconds

versus 13.2 makes Polygon usable in our solution, as the latter is not feasible for

real-world use.

3.3 Proposed Solution

The functional requirements are stated as being able to purchase, trade and

validate tickets. The requirements outlined cover all the use cases. The goal of

the proposed solution is to produce a minimal viable product for NFT tickets to

show that the solution works and then create a dApp to show what is involved in

connecting an application to a smart contract and improve the user experience.

This section will describe and justify the design choices made. The overall solution

14

3.3 Proposed Solution

features a decentralised approach where users can rely on existing tools to interact

with the application. This approach allows for a working implementation in a

quicker timeframe to prove the solution is functional. For the minimal viable

product, Polygonscan (cite polygonscan) is used as the user interface, which is a

blockchain explorer for Polygonscan. The blockchain explorer allows us to view

the smart contract, and interact with the methods using our Metamask mobile

crypto wallet, to purchase, trade, or verify tickets.

15

3. DESIGN

Figure 3.3: Flow chart of the Purchasing and Trading Requirements

• Purchasing Tickets: The ability to purchase tickets is included by creat-

ing the smart contract for the NFT tickets. The ERC-721 standard includes

a method called safeMint which is used to create a new ticket NFT. Minting

means creating the NFT on the blockchain. This method can be designed

to require a price to be paid to mint the NFT, therefore making the NFT

ticket purchasable.

• Trading Tickets: ERC-721 also provides support for trading NFT tickets.

ERC-721 NFTs include the safeTransfermethod and setApprovalForAll

method. The safeTransferFrom method allows users to trade tickets peer

16

3.3 Proposed Solution

to peer by specifying an address they want to transfer their NFT ticket to.

Since NFTs adhere to the ERC-721 token standard, third-party develop-

ers can quickly implement NFTs into their solutions as a solution for one

ERC-721 compliant NFT works for all NFTs. OpenSea is an example of

a marketplace that allows for the trading of NFTs. OpenSea is the most

popular marketplace for buying, selling and trading NFTs. They periodi-

cally scan the blockchain for all NFTs, keep track of what wallets own what

NFTs, and facilitate the trading of any NFT on their marketplace website.

Once our smart contract is created, OpenSea will detect it and display it on

their website. Users can list their NFTs for sale and purchase other NFT

tickets on OpenSea. The marketplace works by the user interacting with

OpenSea’s marketplace contract by using the setApprovalForAll method,

which allows the smart contract to transfer the NFT on the user’s behalf

given the agreed sale price is met. Other marketplaces exist like LooksRare

and Rarible; however, OpenSea has support for Polygon NFTs and Polygon

test networks so we can view our NFTs in development.

• Verifying Tickets: The final user story to fulfil and the most complex

is validating the NFT ticket. When coming up with the design of the

ticket validation, an issue was making sure that the person standing directly

in front of the bouncer was the right person with the NFT ticket. This

is a core problem and without this, the ticket solution would fail. Two-

factor authentication was implemented into the solution to improve the

non-functional requirement of making the solution secure.

17

3. DESIGN

Figure 3.4: Use Case Diagram

Figure 3.4 illustrates the solution for the validation of the NFT ticket. The

design was formed by walking through a real-life scenario. Imagine a concert

goer arrives at a bouncer and tries to enter the venue of an event they

have an NFT ticket for. The bouncer tells a secret code only known to the

bouncer and the concert goer, for example, ’3459’. The secret code is used as

a form of two-factor authentication to make the verifying of ownership more

secure, to know that the concert-goer that executed the contract method to

prove ownership is not an external person. If the secret code resolution were

omitted, the solution would not be able to prove attendance. The concert-

goer uses their mobile wallet, for example, Metamask (Metamask 2022a), a

mobile wallet that provides a user interface to utilise a wallet and interact

18

3.4 Metadata

with the smart contract. To interact with the smart contract, concert-goers

and bouncers can use a blockchain explorer like Etherscan (Etherscan 2022),

allowing navigation to view all details about the smart contract and execute

methods. They then call the proveOwnershipmethod in the smart contract

with their ticket ID and the secret code ’3459’ as arguments. The ticket ID

would be the token ID, which ERC-721 assigns to each NFT minted. So the

first NFT minted would be token ID 0, and the second NFT minted would

be token ID 1, and so on. If the concert-goer owns the specified NFT ticket

ID, then the smart contract method will emit an event on the blockchain

displaying that they have proved ownership for the respective ticket ID and

the secret code. The bouncer can view the smart contract’s event logs at

the smart contract address on the blockchain explorer and see the event

log to verify that the secret code matches the specified secret code, proving

that they own the NFT ticket. They can then let the concert-goer into the

venue.

3.4 Metadata

NFT metadata describes the information about the NFT, such as its name, de-

scription and image, that marketplaces like OpenSea use to display NFTs. The

metadata standard is defined in the ERC-721 interface with what needs to be

included in the JSON. The tokenURI method of the smart contracts returns the

metadata for a particular NFT that the smart contract creator has to set. For the

metadata for this project, base64 encoding was decided as a solution to encode

the details of the NFT as it allows the metadata to be on-chain and exist forever.

However, for the NFT image, the file size is too large to store on-chain as the

transaction fees would be too high. The solution for image storage is a distributed

file store like IPFS or Filecoin. For this solution, IPFS was decided, and a service

called Pinata was used to upload the image for ease of use. It is not essential for

the solution, but it is necessary to highlight what is involved in creating NFTs,

which is why the design choices for the Metadata are not substantial.

19

3. DESIGN

3.5 Dapp Solution

The goal of the dApp is to abstract the functionality of the smart contract, making

the dApp easier to use for both the bouncer and end-user while showcasing the

steps involved in creating a dApp that interacts with the blockchain. The dApp

solution will include a user interface to mint an NFT, validate an NFT and

show event logs for the bouncer to view the validations in a more readable and

accessible manner.

3.6 Development Environment

For a development environment, Hardhat.js (Hardhat 2022a) was decided. Dur-

ing learning, Remix IDE, an online IDE for Ethereum was used to create a smart

contract. Issues were verifying the smart contract on the blockchain explorer

Etherscan. Without the smart contract being verified, the source code cannot be

viewed, and methods like proveOwnership cannot be executed as the byte code

is not decompiled and readable. Hardhat and Truffle were two other solutions

for accomplishing this, and people seemed to prefer Hardhat and noted their

frustrations with Truffle (abcoathup 2022). The Hardhat tutorial was compre-

hensible and quick to set up, securing Hardhat as the choice for the development

environment.

20

4

Implementation

The implementation chapter goes through all the steps involved in creating the

smart contract for the NFT ticket and the dApp from start to finish.

4.1 Smart Contract Setup

4.1.1 Hardhat.js

To set up hardhat.js, Node.js has to be installed if not already. This installation

can be done through an installer (Nodejs 2022).

The following commands were run in the terminal to create the project folder.

1. mkdir NFT-Event-Tickets.

2. cd NFT-Event-Tickets.

3. npm init –yes

4. npm install –save-dev hardhat

5. npx hardhat

The Create an empty hardhat.config.js was selected from the options. For our

code and tests, two new folders were created named “contracts” and “test” under

the current directory. Next, the solidity visual studio code extension needed to be

21

4. IMPLEMENTATION

installed (Blanco 2022). Once installed, a new folder named .vscode was created

with a file named settings.json with the contents shown in Figure 4.1

Figure 4.1: Vscode Settings

These settings help prevent import and compile errors later. The develop-

ment environment is now set up at this stage. Some other configurations will be

implemented as they are met, like compiling, testing, and deploying the smart

contract.

4.1.1.1 Setting up a Blockchain Wallet and Address

An address and a wallet provider are needed to interact with the blockchain. For

the implementation, Metamask is used to support the creation of addresses and

offer a mobile wallet to use at events. Metamask is a browser extension that can

be download by navigating to their website and clicking the download button

(Metamask 2022b). Once installed, the extension will appear on the browser,

and clicking the extension will begin the guided setup process by Metamask.

1. Click Get Started.

2. Create a Wallet.

3. Agree or refuse to help improve Metamask.

4. Create a password.

5. Write down the secret recovery phrase.

6. Confirm the secret recovery phrase.

22

4.1 Smart Contract Setup

The password created is used locally to prevent people who have access to

the same computer from using Metamask. The secret recovery phrase is a 12-

word phrase that is the ”master key” to your wallet and your funds (Metamask

2022a). The secret recovery phrase is the private key in word format. Metamask

uses BIP39, which uses a mnemonic phrase to serve as a backup to recover the

private key. The private key can be derived from this phrase (BlockchainHub

2022).

4.1.2

Connecting to the Test Network Since Ethereum is a protocol, there can be

multiple independent ”networks conforming to this protocol that do not interact

with each other. Networks are different Ethereum environments that can be

accessed for development, testing, or production use cases. (Ethereum 2022d) The

Mainnet is the primary Ethereum blockchain used in production. This network

is where real value transactions occur, and real money is paid to interact with

the blockchain. We do not want to pay real money to develop our applications;

that is why Testnets also exist. These networks provide an environment identical

to Mainnet, except there is no value to any transactions. Most Testnets use a

proof-of-authority consensus mechanism. A small number of nodes are chosen to

validate transactions and create new blocks. Testnet tokens are needed to pay the

transaction fees. These tokens can be gotten from a faucet, which are dApps that

send Testnet tokens to a specified address to request Testnet tokens. The Polygon

test network Mumbai is being used for the implementation, which is the main

Testnet for Polygon. The Testnet can be connected to using Metamask. The

currently connected network can be viewed at the top header from the browser

extension. If it is the first time using Metamask, the Ethereum Mainnet will be

displayed as the connected network.

23

4. IMPLEMENTATION

Figure 4.2: Metamask connected network

Clicking on the dropdown displays a list of networks that the wallet can switch

to.

Figure 4.3: Metamask available networks list

The Mumbai Testnet must be added as a network by clicking the Add Network

button, which redirects to a user interface where the network details can be

entered. The official Polygon documentation shows the network details (Poylgon

2022). This information was used to enter the network details.

24

4.1 Smart Contract Setup

Figure 4.4: Metamask adding network

The save button is used to save the network. The network can be selected

from the dropdown list, and the wallet can be connected to the Mumbai Testnet.

Figure 4.5: Metamask available networks list with Mumbai

Testnet

25

4. IMPLEMENTATION

4.2 Smart Contract Setup

4.2.1 Smart Contracts Wizard

The OpenZeppelin contracts wizard was used to generate a starter ERC-721

template. OpenZeppelin has built smart contract templates that are audited,

secured and community-vetted ERC compliant smart contracts for developers to

use. The wizard allows for customising the smart contract to what is needed.

Using OpenZeppelin saves time, and there is increased reliability and security

as they adhere to the best development practices. The following features were

selected in the contract wizard UI for the solution: ”Mintable”, Auto Increment

Ids”, ”Enumerable”, and ”URI Storage” to build the smart contracts. The wizard

then presents a fully functional ERC-721 NFT smart contract to build upon.

(OpenZeppelin 2022)

26

4.2 Smart Contract Setup

Figure 4.6: OpenZeppelin Smart Contracts Wizard

The file MyToken.sol is created under the contracts folder in our hardhat

project, and the code from the Smart Contracts Wizard is added to this file to

use this code. The sol file extensions are used for Solidity programs. An error

was given for the OpenZeppelin imports starting at line 4 in the code. To fix

this, OpenZeppelin was installed using the npm package manager. The compiler

version in the config file also needed to be changed to 0.8.4 in the hardhat.config.js

file to match the solidity version in the smart contract file. The command npx

27

4. IMPLEMENTATION

hardhat compile could now be run to compile the code successfully. The smart

contract now supports the minting and trading of NFTs. However, it is still

missing the Metadata and verifying ownership functionality.

4.2.2 Verifying Ownership

To implement verifying ownership, the code shown in Figure 4.7 was written for

the implementation.

Figure 4.7: proveOwnership

The method name is defined proveOwnership with the parameters tokenId

and the secret. The keywords uint followed by the number, for example uint256,

is an unsigned integer, and the number defines how many bits the variable can

store. The secret parameter is of type uint16 as the secret code is only a four

digit number, so it does not need to be a larger type, as 16 bits can hold numbers

up to 65,535. The external keyword means the function can only be used outside

the contract. The require keyword in line two checks if a condition is true, and

if it is not, it will stop the execution of the method. This line of code checks

the msg.sender, the address who called the method, is owner of the tokenId,

which is the id of the ticket that is trying to be verified. The ownerOf method

is implemented in the ERC721 contract and returns the address of the owner of

a particular tokenId. This line of code proves ownership of the NFT ticket. The

OwnershipApprovalRequest event is emitted with the address, tokenId and secret

as arguments, which announces the event on the blockchain for everyone to view.

The event first has to be defined before it can be emitted, as shown in Figure

4.8.

28

4.2 Smart Contract Setup

Figure 4.8: OwnershipApprovalRequest

The smart contract now implements verifying the NFT ticket successfully.

4.2.3 Metadata

NFT metadata defines the NFT as an object containing details about the digital

asset. Metadata stores information such as the name, description, attributes

and image of the NFT. The metadata for an NFT is returned by the tokenURI

method. EIP-721 (Ethereum 2022e) defines metadata standards. The metadata

standard is a template for what we can include in our metadata. Marketplaces

like OpenSea use this metadata to pull data like the name and the image of an

NFT.

For the NFT image, an artwork was created and uploaded to IPFS using

Pinata, a service for hosting NFT media. The image was uploaded to Pinata

and they provided a unique ID representing the IPFS hash. The image is now

uploaded to IPFS and can be retrieved using that ID (IPFS 2022).

The next step was to update the tokenURI method to return the metadata

associated with the NFT. The base64 solidity library is needed to encode the

metadata, so it takes up less memory on the blockchain, making the smart con-

tract cheaper. This library is installed via the npm package manager (Brechtpd

2022).

The library is then imported along with the Strings library from OpenZep-

pelin, to convert any uint to a string.

Figure 4.9: imports

29

4. IMPLEMENTATION

The tokenURI implementation is shown in 4.10..

Figure 4.10: tokenURI method

The imageURI links the image we want to use for our Metadata. The name

of each ticket is made up of the tokenId, which is why we need the Strings library

to convert to tokenId to a string. The base64 library encodes our Metadata, so

it uses less memory on the blockchain. Services like OpenSea use this Metadata

to display details regarding the NFT.

4.2.4 Testing the Smart Contract

Smart contracts are immutable once deployed, which means that once deployed,

we cannot change any of the code. Immutability is great for verifiability but

also means that any bugs encountered after deployment cannot be dealt with.

Immutability is why testing is essential to smart contract development, as any

minor error can be catastrophic and put smart contract users at risk. A new file

was created under the test folder named MyToken.js to begin writing tesst. The

30

4.2 Smart Contract Setup

tutorial on the hardhat page was used to construct the tests (Hardhat 2022b).

The goal of the testing was to show how tests can be written and make sure all

the requirements worked.

Figure 4.11: Test code

The variables that are used are defined at the top. The token is deployed,

and we define signers, which are addresses we want to use for testing, the first

address being the owner of the contract. The contract is deployed in the simulated

blockchain environment, and the tests we describe can then be run.

• Deployment: The first test was taken from the hardhat tutorial and checks

if the owner was set correctly. This test case is vital because if the incorrect

owner is set or is not set at all, it voids any smart contract methods that

the contract owner can only call.

• Mint an NFT: For the to mint an NFT test, the number of event ticket

NFTs an address has is checked, also known as the token balance for the

31

4. IMPLEMENTATION

address. The safeMint method is then called, and the token balance is

rechecked after the method is called. If the balance has increased by one,

the mint was successful as the address has one additional token.

• Transferring an NFT: For the transferring NFT test case, a similar struc-

ture was followed. An NFT is minted to address one so that they have an

NFT to transfer. If minted successfully, the token balance of address one

and address two is recorded. The transferFrom method is used to transfer

token Id 0 to address two. Checks are then done to check if the owner of

token Id 0 is address two and if the token balance of address one has decre-

mented and address two has incremented, signifying that the NFT has been

successfully transferred.

• Verifying an NFT: For the validation test case, minting an NFT to the

wallet is done. A secret code is then defined, and the proveOwnership

method is called with tokenId 0 and the secret code as arguments. The

event OwnershipApprovalRequest is then checked to see if it emitted with

the arguments of the address, tokenId and secret.

The tests can be run using the npx hardhat test command, and the terminal

will display if the tests passed or failed and how long they took to run. Imple-

menting these test cases helped identify issues while coding the smart contract

and helped significantly with future versions. If any changes are made, the tests

will run to ensure it does not break any current code features.

4.2.5 Deploying the Smart Contract

A new folder called Scripts was created to deploy the contract, and a new file

under Scripts called deploy.js was created. The code from the hardhat tutorial

website was taken for deploying the contract (Hardhat 2022b). The only change

was changing Token to MyToken

32

4.2 Smart Contract Setup

Figure 4.12: Deploy code

To deploy the contract to the Mumbai Testnet, changed needed to be made

to the hardhat.config.js file to support this. The requirements for this file are

to get an API key from an Ethereum provider to interact with the blockchain,

specify the network, and specify our private key so that the deployer can use that

account. For a provider, Alchemy was used. They offer a free tier and support

connecting to Polygon’s Mumbai Testnet. Providers are services that run nodes

that talk to the Ethereum network. They abstract interaction with the blockchain

by providing API endpoints for developers to use, which means we do not have to

run our nodes to connect to the blockchain. Another provider would be Infura,

which is what Metamask uses. The first step is to create an Alchemy account to

get an API key. After logging in from the home screen, the create app button

triggers a form to fill out details about the app. Polygon was selectable as a chain,

and Polygon Mumbai as the network. An app was then created, which allowed

viewing and copying the Alchemy API Key needed for the config file. The API

key and the private account key were added to the config file.

33

4. IMPLEMENTATION

Figure 4.13: hardhat.config.js file

The deploy command can now be executed ’npx hardhat run scripts/deploy.js

–network mumbai’. This command runs the config file’s deploy script for the

specified network. After the command finishes executing, we are given the smart

contract address, where the code is deployed on the blockchain. The smart con-

tract address is ‘0xcaa7cfdd22c401db2addae7dc7a7cbd7fb84b260’ We can view

the smart contract using the Mumbai PolygonScan blockchain explorer (Poly-

gonScan 2022).

4.3 Dapp Implementation

4.3.1 Setting up the Development Environment

Next.js is a server-sided React Framework for developing applications. Next.js

is a personal preference for the frontend. Majority of frontend technologies can

be used to create the dApp. To setup Next.js I followed the tutorial on the

34

4.3 Dapp Implementation

nextjs website (NextJS 2022). For the Web3 library, ethers.js (EthersJS 2022)

was used to interact with the Ethereum blockchain and ecosystem. To aid with

the front-end design, Mantine UI, a react component library was used.

4.3.2 Authenticating the User

The first step of the dApp is authenticating the user. A wallet is used in Web3

to sign into websites. This functionality is implemented into the Sign In button.

When the Sign In button is clicked, it will prompt the user to connect their wallet

address. There is a javascript library called Web3Modal, which provides an API

to allow us to support multiple wallet providers, not just Metamask.

Figure 4.14: providerOptions

35

4. IMPLEMENTATION

Figure 4.15: Authentication code

36

4.3 Dapp Implementation

The providerOptions variable is needed to allow the other wallet providers to

work. An Infura API key is needed for it to work, which can be retrieved from

the Infura website (Infura 2022). The infuraId in the code is random, and not

the actual API key used. Providers are an abstraction of a connection to the

Ethereum network, whereas signers are an abstraction of an Ethereum account.

The connectWeb3Modal method is called when the Sign In button is clicked.

This button will open the modal with provider options, and if the user connects

successfully, it will update our user and provider state. The method retrieves

the address of the connected network and uses the ENS name as a display name

instead of the address if it exists. This method is also run on every page load

using the useEffect hook. If the account is already connected to the website, it

will save the data to state without asking the user to connect. This check is

needed to see if the account is connected when navigating pages, so the state

persists across pages.

4.3.3 Handling Changes

The user can switch addresses, disconnect their wallet or switch networks. These

are situations that have to be handled. Event listeners provided by Web3Modal

are used. These event listeners give the user full transparency and feedback on

how the dApp reacts to their changes and whether the dApp can continue in that

state. For example, if the user is on or switches to a network that is not the

Mumbai Testnet, the dapp must notify that the user has to change network for

the dApp to continue to work.

37

4. IMPLEMENTATION

Figure 4.16: Handling Changes code

This useEffect hook updates when the provider state changes. Event listeners

will be added if the provider exists, and will be removed when the provider

changes. The code handles when a user switches their account, switches network

or disconnects, and updates the state for the frontend to react to the changes.

4.3.4 Purchasing a Ticket

The following implementation of the dApp was to abstract purchasing of the

ticket. For this requirement, A button called purchase ticket was created, and

when clicked, it will call the safeMint function from our smart contract, which

will prompt a transaction for the connected user’s wallet. If the user confirms

38

4.3 Dapp Implementation

the transaction, then they have purchased the ticket. This experience is similar

to executing the safeMint write method from the smart contract address on the

blockchain explorer. The smart contract ABI and the smart contract address

is needed to implement the code. ABI stands for Application Binary Interface,

the standard way to interact with contracts in the Ethereum ecosystem (Solidity

2022). The ABI is gotten from the smart contract, and we only need to specify

the methods we need.

Figure 4.17: ABI

39

4. IMPLEMENTATION

Now the code for the contract can be written.

Figure 4.18: purchaseNFT

The Mantine notification system is used here to provide real-time updates to

40

4.3 Dapp Implementation

the user about the transaction status. First, we get the user and initialise the

contract. The safeMint method from the smart contract is called, and the notifi-

cation system display that the transaction has started. This method is a promise,

so if the user confirms the transaction, the notification system will display that

the transaction has been sent and should confirm shortly. If the user rejects the

transaction or any other error occurs in the process, the notification system will

catch the error and display the error message. The code await verifyTxn.wait()

is used to wait until the transaction confirms. Once the transaction confirms the

notification system displays that it has confirmed, which means the ticket has

been purchased.

4.3.5 Proving Ownership of a Ticket

The Scan Tickets button is created for implementing the ownership of the ticket.

This button then brings the user to another page displaying all of the user’s

event ticket NFTs. Alchemy is used to display the NFTs for the user, which is a

blockchain API service that has endpoints tailored for NFTs to make retrieving

NFTs from the blockchain easier. Using the user’s address that is gotten from

them connecting their wallet, a GET request is sent to the getNFTs endpoint

using the Alchemy API key, the user’s address, and the smart contract address

for the NFT ticket. This endpoint will return NFTs owned by the user. The

Metadata is then needed for each NFT. The IPFS image needed the IPFS URL

appended at the start. Websites like OpenSea automatically recognise the IPFS

hash and read it. The way it is implemented in this solution does not appear to

be best practice; however, it works nonetheless.

41

4. IMPLEMENTATION

Figure 4.19: getNFTs

A modal will appear for each NFT the user has if they click on the Verify NFT

button, which has a text box for the secret code. The token Id is retrieved from

the user clicking on a particular NFT, so they do not need to specify the token

Id themselves. Once the secret code is entered, the user can click the validate

button, which will call the proveOwnership method, which prompts a transaction

for the user to confirm. The same code as the purchase NFT method is used as

shown in Figure 4.18; however, the proveOwnership method is called instead of

the safeMint method.

42

4.3 Dapp Implementation

4.3.6 Viewing Event Logs

The View Event Logs button was created on the home page for viewing event

logs. Clicking this page brings the user to the event logs page. The logs display in

a neat table with all the headings and values clearly defined, allowing the bouncer

to verify the details quickly. We now have the requirements of the dApp imple-

mented successfully to abstract the functionality of the smart contract, making

it easier for a user to utilise.

Figure 4.20: Event Logs Code

43

4. IMPLEMENTATION

4.3.7 Deploying the Dapp

To deploy the dApp Vercel was used. A Vercel account and linked to the GitHub

account with the NFT dApp. Once it was linked, the GitHub repo for the dApp

was selected. Vercel supports deploying Next.js apps. Once the build was com-

pleted, the dApp was deployed to https://nft-ticket-app.vercel.app/ for free with

no setup required.

44

5

Walkthrough

The walkthrough chapter goes through the steps involved for all users using the

system with respect to the requirements. The first section walks through the

minimal solution using the blockchain explorer as a frontend. The second section

will go through the walkthrough with the dApp solution to highlight and contrast

the difference. The walkthrough helps in visualising the complete system, and

also aids in the evaluation.

5.1 Minimal Solution

5.1.1 Purchasing a ticket

For a concert-goer to purchase a ticket for an event they wish to go to, they

navigate to the smart contract address on the blockchain explorer, and click on

the write contract tab (?). Here the concert-goer can connect their wallet by

clicking Connect to Web3, and call the safeMint method with their address as

the argument. This will initiate the transaction in their Metamask wallet, which

they can confirm, and once the transaction is confirmed on the blockchain, they

have successfully purchased the ticket, and they can view it on the blockchain

explorer at their address.

45

5. WALKTHROUGH

Figure 5.1: Connecting to PolygonScan

Figure 5.2: Confirming the Transaction

5.1.2 Validating the Ticket

Imagine the concert-goer has arrived at the venue, and they in-front of a bouncer

who has requested they verify their ticket so they can let the concert goer into the

venue. The bouncer communicates with the concert-goer a secret code as a form

of two-factor authentication. Using the Metamask mobile app, the concert-goer

46

5.1 Minimal Solution

navigates to the smart contract address of the NFT Ticket (?). They then call

the proveOwnership method with the tokenId of the NFT ticket they are trying

to claim ownership of, and enter the secret code the bouncer has communicated

to the concert-goer. If the transactions confirms, the OwnershipApprovalRequest

event will be emitted onto the blockchain with the address, tokenId and secret

code the concert-goer entered. If this matches what the bouncer communicated,

the bouncer can view the event logs on the blockchain explorer and grant entry

to the concert-goer into the venue.

Figure 5.3: proveOwnership Method on PolygonScan

Figure 5.4: Smart Contract Event Logs

47

5. WALKTHROUGH

5.1.3 Trading the Ticket

The NFT can be traded by the concert-goer on any marketplace that supports

Polygon NFTs like OpenSea as the ticket is an ERC-721 NFT. The concert-goer

connects their wallet to OpenSea which will show the NFTs they own, and they

can list their NFT ticket for sale, and anybody can purchase this NFT, and be

able to verify the origin of the NFT, as it can be seen on the blockchain. The

concert-goer’s address and the NFT ticket collection can be viewed on OpenSea

too through this link (OpenSea 2022)

5.2 Dapp Solution

To connect or sign in to the dapp, there is a sign in button located in the navbar

for all pages of the dapp. The concert-goer clicks this sign in button on their

mobile device, and will get a pop-up for Metamask asking to connect their wallet.

Once connected, the concert-goer can use the dApp and is stayed logged in. If the

concert-goer is connected to the wrong network, the dApp will display that they

are connected to the wrong network, and ask them to click to switch network.

This will trigger a Metamask pop up asking to switch networks.

5.2.1 Purchasing the ticket

To purchase the ticket using the dApp, the concert-goer can visit the purchase

page of the dApp. They can click on the purchase ticket button which will

call the safeMint method from the NFT ticket smart contract. This will trigger

a pop up for the transaction, and the concert-goer can confirm it to buy the

ticket. Once confirmed the ticket has been bought. The dApp also provides real

time notifications to show the status of the transaction at the bottom right of the

screen on desktop and at the bottom on mobile. When the purchase ticket button

is clicked, the notification will display the the transaction has started and that

the concert-goer must confirm the transaction. Once confirmed, a notification

will state that the transaction has started and that it should confirm soon, and

finally a notification displays that the transaction confirmed. Metamask provides

notifications to show the status of transactions, however this system provides

48

5.2 Dapp Solution

more information on the status of the transaction, to help the user know exactly

what is happening. Any errors in the transaction will also be caught and displayed

by the notification system.

Figure 5.5: Purchase Ticket page

Figure 5.6: Transaction Started

Figure 5.7: Transaction Sent

49

5. WALKTHROUGH

Figure 5.8: Transaction Confirmed

Figure 5.9: Transaction Error

5.2.2 Validating the Ticket

To validate the ticket, the concert-goer uses their mobile Metamask browser, and

ensures they are connected to the dApp. Once connected they can visit the My

Tickets tab which will display a list of the NFTs owned by the concert-goer.

They can click the Verify Ticket button which opens a modal, requesting the

secret code. They then enter the secret code and click the Verify button. This

will call the proveOwnership method, except with the dApp, the concert-goer

does not have to enter their address, or tokenId as the dApp already knows that

information. Once the proveOwnership transaction confirms, the bouncer can

view the Event Logs, to see if the ticket has been verified. Event Logs also has

three icon buttons which represent the states verified, invalid and not checked. If

the green check mark button is clicked, the table row will highlight green. The

red examination mark will highlight the row red, and the last icon button will

remove any row highlighting. This serves as a system to allow the bouncer to

know if a ticket has been validated or not. The system can also check if previous

tickets were marked as validated, by highlighting the row as yellow or another

colour to indicate that the ticket has already been validated.

50

5.2 Dapp Solution

Figure 5.10: Event Logs

Figure 5.11: Event Logs Highlighted

5.2.3 Trading the Ticket

Trading the ticket is the same as the minimal solution.

51

6

Evaluation

The evaluation chapter aims to break down different characteristics that have to

be considered when designing an event ticketing system and evaluate the event

ticketing systems by comparing these characteristics to each other. The evalua-

tion will compare the NFT ticket solution and current ticketing solutions. It is

quite difficult to estimate the true development costs, however generalised obser-

vations can be made about these costs. The future work chapter will describe

what can be done to improve the solution where it is more limited.

6.1 Ease of Use

To evaluate the ease of use of the solution, we have to evaluate the ways the user

can use the system: purchasing the ticket, trading the ticket, verifying the ticket,

and the pre-requisites the user needs to interact with the system.

6.1.1 Pre-requisites

For our solution, the pre-requisites are a mobile crypto wallet with sufficient

cryptocurrency to buy the ticket. The NFT solution is unique, as the majority of

people are not familiar witg the Web3 ecosystem. A first time user would have to

download and install Metamask or their mobile device and or browser (a signifi-

cant ramp up), whereas Web2 solutions would utilise an email for authentication.

52

6.1 Ease of Use

Without email, another means of communication is needed with the customer. A

notification or chat system would have to be implemented into the solution.

6.1.2 Purchasing the ticket

Purchasing MATIC to purchase the ticket is something that is not easy to do for

first-time users as well. Most crypto exchanges require a KYC process to purchase

crypto, which is a lengthy process of submitting an identification document like

a passort along with a selfie to prove your idenity.

6.1.3 Trading the ticket

Users can trade their tickets on a marketplace like OpenSea. They allow users

to list NFTs for sale for any price, and if it sells, the user receives the amount

they listed it for minus fees. There is a secure, open marketplace for all tickets

out of the box. Tickets can also be traded peer to peer using the smart contract

transfer method. The drawbacks are that OpenSea can be tricky and confusing,

especially with listing items and changing the price of items, gas fees, and signing

transactions.

6.1.4 Verifying the Ticket

Current ticket solutions generally offer a QR or barcode ticket. A concert-goer

arrives at the venue with a barcode for their ticket, either on paper or mobile,

and the bouncer will scan the ticket to ensure it is valid and let the concert-goer

into the venue. With the NFT solution, the bouncer tells the concert-goer a code,

and that code is entered into the dapp; the user clicks the verify button, waits

two seconds for the transaction to confirm, and then waits for the bouncer to see

the event log and let concert-goer into the venue. The NFT solution is relatively

slow compared to the current solution, and a user could enter the secret code

wrong. The solution with the event logs is not scalable as a venue with multiple

bouncers could have difficulty verifying tickets. As a minimum viable product, the

solution works well but still has many improvements to be more usable without

compromising security.

53

6. EVALUATION

6.1.5 Speed

Polygon’s average block processing time is 2.1 seconds. Transactions are bundled

into blocks. So when a transaction is sent, like verifying a ticket or purchasing

a ticket, it takes 2.1 seconds to confirm that transaction (Investopedia 2022).

For purchasing tickets, 2.1 seconds is adequate as from personal experience, card

payments generally take a few seconds to confirm. However for validating the

ticket, this time could add up and slow down the queue system for entering

venues.

6.2 Transaction Costs

We have to consider the development and server costs for the cost of ticketing

systems. To develop an event ticketing system, we need a backend that handles

the creation of tickets, stores user information in a database, accepts payments,

verifies that tickets are valid, and handles authentication.

6.2.1 NFT Solution

The costs for the NFT solution would be servers for the dapp frontend and the

development costs. The front end cost would be servers to send the web pages to

the client. The development costs would include the one time cost of deploying

the dapp and resources for developing the smart contract and dapp. The costs

for the blockchain side of the dapp can be reviewed by using the hardhat-gas-

reporter plugin. This plugin allows us to view the cost of deploying the smart

contract, and the cost of the write methods like purchasing, transferring and

proving ownership of the ticket. After running our tests, the plugin will display

the cost of the tests in the terminal. Gas refers to the unit that measures the

computational effort required to execute specific operations on the Ethereum

network. Since each Ethereum transaction requires computational resources to

execute, each transaction requires a fee. Gas refers to the fee required to conduct

a transaction on Ethereum successfully (Ethereum 2022f). Essentially what this

means is that different methods cost a different transaction fee. We can see the

cost of executing our methods in Figure 6.1.

54

6.2 Transaction Costs

Figure 6.1: hardhat-gas-reporter plugin

For Figure 6.1, the methods describe the methods that were executed. The 34

gwei/gas refers to the current gas prices. This number is how much base gas must

be paid to get the transaction confirmed. This price fluctuates based on traffic on

the blockchain. If many people are using the blockchain simultaneously, the gas

price will be higher as the gas prices are paid to miners to confirm the transaction.

The more gas paid, the faster the transaction will be confirmed. The formula for

calculating the gas fees for a transaction is Gas units (limit) * Gas price per unit.

Our gas units for safeMint is 123,679 and the gas price is 34 gwei. 123,679 *

34 is 4,205,086 gwei which translates to 0.0042 MATIC (Polygon’s native crypto

currency). The price of MATIC currently is 1.49 euro for 1 MATIC meaning that

0.0042 MATIC costs 0.006 euro to purchase a ticket. This price is the cost of

the blockchain backend to purchase and store an NFT ticket on the blockchain

forever. We then have a fully scalable backend and database deployed with no

additional costs, and our NFT tickets are functional.

The dapp makes the system usable for the user, which is needed for real-world

use. Alchemy provides nodes for us to communicate with the blockchain. Their

costs are calculated in compute units. So we are charged for how much computing

power we use rather than a single fixed cost for a server. The Alchemy documen-

tation page (Alchemy 2022) shows the cost of different methods to the Ethereum

blockchain. A common method that the dapp will use is eth sendRawTransaction

which is used for purchasing and verifying the ticket which costs 250 compute

units. Other methods are used like eth estimateGas that are used too for trans-

actions, so let us say our cost per user is around 500 compute units in total. On

55

6. EVALUATION

the free tier, we get 300 million compute units a month. We can call this method

600 thousand times, meaning 300 thousand tickets can be purchased and verified

for free. To upgrade the usage, it costs 50$ a month for 400 million compute

units, then it costs 1.2$ for every additional million compute units.

The costs of the backend are minuscule. The cost can be covered through

a service fee or ticket profits. There is also a gas fee that the user has to pay

for purchasing or verifying the ticket. The smart contract can cover this fee by

implementing a gas station network, so the smart contract pays the cost of the

gas fees rather than the user. This gas fee can also be taken from the ticket cost

and based on the estimates above would cost about one cent in euro. Users have

no card processing fees as payments are made in crypto.

6.2.2 Current Solution

It is quite difficult to determine the costs of the costs of operating a ticket system,

as this information is encapsulated, we are only presented with the consumer cost.

Eventbrite is a popular ticketing solution for event organisers to organise their

own events. From their pricing website, and my location their pricing is €0.49

+ 4% per paid ticket and Professional pricing is €0.69 + 5.5% per paid ticket

(EventBrite 2022).

The development costs would include a hosted server and database. The

server and database would require a scaling solution to handle large loads, and

the database would need a backup solution in case data gets corrupted. This

infrastructure would also have to be built by hiring a team of developers. Time

can be saved by using external services like Firebase or MongoDB, which could

further increase or decrease costs. Maintenance and testing of the backend also

need to be considered. From this we can have a rough idea of the development

costs involved.

6.3 Development Time

The development time for the NFT ticket solution is more weighted in terms of

design than implementation. The dapp took the most significant amount of time

56

6.3 Development Time

as it was slightly more challenging to connect Metamask and figure out the APIs.

However, once that knowledge is known, the implementation is quite straight

forward. The blockchain provides a backend, database and authentication system

out of the box, with little coding and setup required for the implementation.

57

7

Conclusions and Future

Directions

7.1 Conclusion

This project aimed to show that NFTs can be used for more than just pictures,

and the underlying technology can be used to solve everyday problems and im-

prove current technologies in different industries, in this case, the ticketing in-

dustry. The project research NFT ticketing solutions, designed and implemented

an NFT ticketing solution while providing an in-depth inside into the process,

and finally presented a walkthrough of the solution to help aid in the evaluation.

There is currently a massive problem with verifying tickets and knowing if what

a concert-goer is purchasing is an actual ticket. Millions of people have fallen

victim to ticket scams and fraud, and the solution solved this issue by tracing

the creation of the ticket to a smart contract on the blockchain. If the Uni-

versity of Limerick and other event organisers could implement NFT tickets as

described, issues of ticket scammers would be solved. The details in the future

work chapter would have to be implemented to make the solution usable in the

real world. However, in terms of showing how NFT technology can solve these

everyday problems, the project has done that.

58

7.2 Future Work

7.2 Future Work

The future work chapter describes improvements that can be made based to

improve the solution, based on the drawbacks uncovered in the evaluation chapter,

many of which are to do with easier ramp-up and the user experience.

7.2.1 Use Email as a wallet

https://magic.link/ is a service that allows passwordless authentication. Users

provide their email address and receive an email that they click on to log in. Magic

is powered by crypto. Each account is tied to a wallet address on the Ethereum

blockchain. Magic can be utilised just like Metamask, except onboarding is as

easy as entering an email address and clicking a button. It provides an experience

people are already familiar with and enriches the account as it is tied to an

address. However, developers are locked into Magic’s service, which may be a

drawback. Pricing is 1,000 free active users and then 5 United States cents per

user. An SDK is provided with docs on integrating Magic into a dapp easily.

Wallets like Metamask can still be offered as a solution to log in. Magic has this

feature coming soon also.

7.2.2 Ticket Purchasing

There are services like MoonPay which allow you to quickly buy crypto with a

card instantly, without having to do a KYC process. MoonPay is also working

on NFT integration, where users can purchase an NFT with a card. It would

provide the same experience as current ticketing technologies that people are

used to. Users would be allowed to pay with a card instead of crypto, making it

easier for current internet users.

7.2.3 Verifying the Ticket

Verifying the ticket needs improvements in terms of ease of use. A QR code could

be used, but this issue is being able to verify tickets while not compromising

security.

59

7. CONCLUSIONS AND FUTURE DIRECTIONS

7.2.4 Regulated Marketplace

A regulated marketplace for the tickets could be created and implemented into

the smart contract and dapp to improve trading the ticket. A rough idea would be

to allow the NFT only to be traded to the marketplace smart contract and disable

trading of NFTs to other smart contracts, so peer to peer trading would still be

permitted. The marketplace would be integrated into the dapp, and rules could

be set for the marketplace like tickets are not allowed to be traded above sale

price to stop ticket scalpers from buying and selling for a profit. After the event

is over, the NFT could be allowed to trade on any marketplace then, by opening

trade to all smart contracts. Ticketmaster offers a solution that allows users to

sell their tickets on Ticketmaster, and people can buy them from there. However,

this does not stop third-party marketplaces. This concept for a marketplace was

implemented into the solution, however it was not planned as being part of the

solution. The source code for the marketplace can be viewed at the public GitHub

repos for the smart contract (?screpo), and dapp (?dapprepo). Every aspect of

the concept described, was implemented.

60

References

abcoathup (2022), [online], available: https://forum.openzeppelin.com/t/

how-to-verify-with-hardhat-or-truffle-a-smart-contract-using-openzeppelin-contracts/

4119 [accessed: 12 April 2022] . 20

Actionfraud (2021), ‘https://www.actionfraud.police.uk/news/beware-of-ticket-

fraud-as-restrictionsease’, available: https://www.actionfraud.police.uk/news/

beware-of-ticket-fraud-as-restrictionsease [accessed: 2 January 2022] . 1

Alchemy (2022), [online], available: https://docs.alchemy.com/alchemy/

documentation/compute-units [accessed: 15 April 2022] . 55

BAM (2022), [online], available: https://www.bam.fan/ [accessed: 3 January 2022] .

9

Blanco, J. (2022), [online], available: https://marketplace.visualstudio.com/items?

itemName=JuanBlanco.solidity [accessed: 12 April 2022] . 22

BlockchainHub (2022), [online], available: https://blockchainhub.net/

blockchain-intro/ [accessed: 12 April 2022] . vi, 3, 4, 23

Blocknative (2022), [online], available: https://www.blocknative.com/blog/

monitor-polygon-mempool#:∼:text=On%20Polygon%2C%20the%20average%

20block,transactions%20than%20the%20Ethereum%20network [accessed: 12 April

2022] . 14

Brechtpd (2022), [online], available: https://www.npmjs.com/package/base64-sol/v/

1.0.1 [accessed: 15 April 2022] . 29

Coinbase (2022), [online], available: https://www.coinbase.com/learn/crypto-basics/

what-is-polygon [accessed: 12 April 2022] . 14

61

https://forum.openzeppelin.com/t/how-to-verify-with-hardhat-or-truffle-a-smart-contract-using-openzeppelin-contracts/4119
https://forum.openzeppelin.com/t/how-to-verify-with-hardhat-or-truffle-a-smart-contract-using-openzeppelin-contracts/4119
https://forum.openzeppelin.com/t/how-to-verify-with-hardhat-or-truffle-a-smart-contract-using-openzeppelin-contracts/4119
https://www.actionfraud.police.uk/news/beware-of-ticket-fraud-as-restrictionsease
https://www.actionfraud.police.uk/news/beware-of-ticket-fraud-as-restrictionsease
https://docs.alchemy.com/alchemy/documentation/compute-units
https://docs.alchemy.com/alchemy/documentation/compute-units
https://www.bam.fan/
https://marketplace.visualstudio.com/items?itemName=JuanBlanco.solidity
https://marketplace.visualstudio.com/items?itemName=JuanBlanco.solidity
https://blockchainhub.net/blockchain-intro/
https://blockchainhub.net/blockchain-intro/
https://www.blocknative.com/blog/monitor-polygon-mempool##:~:text=On%20Polygon%2C%20the%20average%20block,transactions%20than%20the%20Ethereum%20network
https://www.blocknative.com/blog/monitor-polygon-mempool##:~:text=On%20Polygon%2C%20the%20average%20block,transactions%20than%20the%20Ethereum%20network
https://www.blocknative.com/blog/monitor-polygon-mempool##:~:text=On%20Polygon%2C%20the%20average%20block,transactions%20than%20the%20Ethereum%20network
https://www.npmjs.com/package/base64-sol/v/1.0.1
https://www.npmjs.com/package/base64-sol/v/1.0.1
https://www.coinbase.com/learn/crypto-basics/what-is-polygon
https://www.coinbase.com/learn/crypto-basics/what-is-polygon

REFERENCES

Dailyhodl (2018), ‘Blockchain to Power Ticket Sales for Live Events Dur-

ing World Cup 2018’, available: https://dailyhodl.com/2018/05/07/

blockchain-topower-ticket-sales-for-live-events-during-world-cup-2018 [accessed:

3 January 2022] . 7, 8

Ethereum (2022a), [online], available: https://ethereum.org/en/developers/docs/

web2-vs-web3/ [accessed: 19 February 2022] . 2

Ethereum (2022b), [online], available: https://ethdocs.org/en/latest/

account-management.html?highlight=address#keyfiles [accessed: 12 April 2022] .

4

Ethereum (2022c), [online], available: https://eips.ethereum.org/EIPS/eip-875 [ac-

cessed: 3 January 2022] . 7

Ethereum (2022d), [online], available: https://ethereum.org/en/developers/docs/

networks/ [accessed: 10 March 2022] . 23

Ethereum (2022e), [online], available: https://eips.ethereum.org/EIPS/eip-721 [ac-

cessed: 3 January 2022] . 29

Ethereum (2022f), [online], available: https://ethereum.org/en/developers/docs/gas/

[accessed: 10 March 2022] . 54

Etherscan (2022), [online], available: https://etherscan.io/ [accessed: 3 January 2022]

. 19

EthersJS (2022), [online], available: https://docs.ethers.io/v5/ [accessed: 15 April

2022] . 35

EventBrite (2022), [online], available: https://www.eventbrite.ie/organizer/pricing/

[accessed: 25 April 2022] . 56

GET (2022), [online], available: https://www.get-protocol.io/ [accessed: 3 January

2022] . 8

GUTs (2022), [online], available: https://guts.tickets/ [accessed: 3 January 2022] . 8

Hardhat (2022a), [online], available: https://hardhat.org/ [accessed: 3 January 2022]

. 20

62

https://dailyhodl.com/2018/05/07/blockchain-topower-ticket-sales-for-live-events-during-world-cup-2018
https://dailyhodl.com/2018/05/07/blockchain-topower-ticket-sales-for-live-events-during-world-cup-2018
https://ethereum.org/en/developers/docs/web2-vs-web3/
https://ethereum.org/en/developers/docs/web2-vs-web3/
https://ethdocs.org/en/latest/account-management.html?highlight=address##keyfiles
https://ethdocs.org/en/latest/account-management.html?highlight=address##keyfiles
https://eips.ethereum.org/EIPS/eip-875
https://ethereum.org/en/developers/docs/networks/
https://ethereum.org/en/developers/docs/networks/
https://eips.ethereum.org/EIPS/eip-721
https://ethereum.org/en/developers/docs/gas/
https://etherscan.io/
https://docs.ethers.io/v5/
https://www.eventbrite.ie/organizer/pricing/
https://www.get-protocol.io/
https://guts.tickets/
https://hardhat.org/

REFERENCES

Hardhat (2022b), [online], available: https://hardhat.org/tutorial/ [accessed: 3 Jan-

uary 2022] . 31, 32

Infura (2022), [online], available: https://infura.io/ [accessed: 15 April 2022] . 37

Investopedia (2022), [online], available: https://www.investopedia.com/

polygon-matic-definition-5217569#citation-15 [accessed: 15 April 2022] . 54

IPFS (2022), [online], available: https://ipfs.io/ipfs/

QmPtUx44pEg6KtorBrcjNxJYwx7S1nY7NPoCpmLUXxcBts [accessed: 15

April 2022] . 29

James T. Reese, J. and Thomas, D. (2013), Ticket Operations History and Background,

Ticket Operations and Sales Management in Sport. 1

Komodo (2022), [online], available: https://komodoplatform.com/en/academy/

bitcoin-wallet-address/#:∼:text=The%20main%20difference%20is%20email,use%

20the%20correct%20wallet%20address [accessed: 12 April 2022] . 4

Leonhardt, M. (2018), ‘About 12 percent of people buying concert tick-

ets get scammed’, available: https://www.cnbc.com/2018/09/13/

about-12-percent-of-people-buying-concertticketsget-scammed-.html [accessed:

2 January 2022] . 1

Metamask (2022a), [online], available: https://metamask.io/ [accessed: 3 January

2022] . 4, 18, 23

Metamask (2022b), [online], available: https://metamask.io/download/ [accessed: 12

April 2022] . 22

NextJS (2022), [online], available: https://nextjs.org/learn/basics/create-nextjs-app

[accessed: 15 April 2022] . 35

Nodejs (2022), [online], available: https://nodejs.org/en/download/ [accessed: 12

April 2022] . 21

OpenSea (2022), [online], available: https://testnets.opensea.io/

0x3e781ec0b18b75b5e3a8f23b79003bc7f1cf3954 [accessed: 15 April 2022] . 48

OpenZeppelin (2022), [online], available: https://docs.openzeppelin.com/contracts/4.

x/wizard [accessed: 3 January 2022] . 26

63

https://hardhat.org/tutorial/
https://infura.io/
https://www.investopedia.com/polygon-matic-definition-5217569##citation-15
https://www.investopedia.com/polygon-matic-definition-5217569##citation-15
https://ipfs.io/ipfs/QmPtUx44pEg6KtorBrcjNxJYwx7S1nY7NPoCpmLUXxcBts
https://ipfs.io/ipfs/QmPtUx44pEg6KtorBrcjNxJYwx7S1nY7NPoCpmLUXxcBts
https://komodoplatform.com/en/academy/bitcoin-wallet-address/##:~:text=The%20main%20difference%20is%20email,use%20the%20correct%20wallet%20address
https://komodoplatform.com/en/academy/bitcoin-wallet-address/##:~:text=The%20main%20difference%20is%20email,use%20the%20correct%20wallet%20address
https://komodoplatform.com/en/academy/bitcoin-wallet-address/##:~:text=The%20main%20difference%20is%20email,use%20the%20correct%20wallet%20address
https://www.cnbc.com/2018/09/13/about-12-percent-of-people-buying-concertticketsget-scammed-.html
https://www.cnbc.com/2018/09/13/about-12-percent-of-people-buying-concertticketsget-scammed-.html
https://metamask.io/
https://metamask.io/download/
https://nextjs.org/learn/basics/create-nextjs-app
https://nodejs.org/en/download/
https://testnets.opensea.io/0x3e781ec0b18b75b5e3a8f23b79003bc7f1cf3954
https://testnets.opensea.io/0x3e781ec0b18b75b5e3a8f23b79003bc7f1cf3954
https://docs.openzeppelin.com/contracts/4.x/wizard
https://docs.openzeppelin.com/contracts/4.x/wizard

REFERENCES

Oveit (2022), [online], available: https://oveit.com/nft-tickets/ [accessed: 3 January

2022] . 9

PolygonScan (2022), [online], available: https://mumbai.polygonscan.com/address/

0xcaa7cfdd22c401db2addae7dc7a7cbd7fb84b260#code [accessed: 15 April 2022] .

34

Poylgon (2022), [online], available: https://docs.polygon.technology/docs/develop/

network-details/network/ [accessed: 12 April 2022] . 24

PYMNTS (2019), ‘How Ticketmaster Rewards Fans And Bars Fraud-

sters’, available: https://www.pymnts.com/fraud-prevention/2019/

how-ticketmaster-rewards-fans-bars-fraudsters-security/ [accessed: 2 January

2022] . 1

Secutix (2022), [online], available: https://www.secutix.com/customers/uefa [ac-

cessed: 3 January 2022] . 8

Solidity (2022), [online], available: https://docs.soliditylang.org/en/v0.8.13/abi-spec.

html [accessed: 12 April 2022] . 39

TIXNGO (2022), [online], available: https://www.tixngo.io/ [accessed: 3 January

2022] . 9

Twitter (2022), [online], available: https://twitter.com/Victor928/status/

1078456191276052481 [accessed: 3 January 2022] . 7

UEFA (2020), ‘Blockchain to Power Ticket Sales for Live Events During World

Cup 2018’, available: https://www.uefa.com/insideuefa/mediaservices/news/

025a-0f8e753e5b69-12cc5167a50a-1000--over-one-million-uefa-euro-2020-tickets-to-\
be-distributedto-fa/ [accessed: 3 January 2022] . 8

64

https://oveit.com/nft-tickets/
https://mumbai.polygonscan.com/address/0xcaa7cfdd22c401db2addae7dc7a7cbd7fb84b260##code
https://mumbai.polygonscan.com/address/0xcaa7cfdd22c401db2addae7dc7a7cbd7fb84b260##code
https://docs.polygon.technology/docs/develop/network-details/network/
https://docs.polygon.technology/docs/develop/network-details/network/
https://www.pymnts.com/fraud-prevention/2019/how-ticketmaster-rewards-fans-bars-fraudsters-security/
https://www.pymnts.com/fraud-prevention/2019/how-ticketmaster-rewards-fans-bars-fraudsters-security/
https://www.secutix.com/customers/uefa
https://docs.soliditylang.org/en/v0.8.13/abi-spec.html
https://docs.soliditylang.org/en/v0.8.13/abi-spec.html
https://www.tixngo.io/
https://twitter.com/Victor928/status/1078456191276052481
https://twitter.com/Victor928/status/1078456191276052481
https://www.uefa.com/insideuefa/mediaservices/news/025a-0f8e753e5b69- 12cc5167a50a-1000--over-one-million-uefa-euro-2020-tickets-to-\be-distributedto-fa/
https://www.uefa.com/insideuefa/mediaservices/news/025a-0f8e753e5b69- 12cc5167a50a-1000--over-one-million-uefa-euro-2020-tickets-to-\be-distributedto-fa/
https://www.uefa.com/insideuefa/mediaservices/news/025a-0f8e753e5b69- 12cc5167a50a-1000--over-one-million-uefa-euro-2020-tickets-to-\be-distributedto-fa/

	List of Figures
	1 Introduction
	1.1 Web3 Components
	1.1.1 Blockchain
	1.1.2 Addresses
	1.1.3 Wallets
	1.1.4 Non Fungible Tokens
	1.1.5 Smart Contracts

	1.2 Aims and Objectives
	1.3 Methodology

	2 Research
	2.1 Background Research
	2.2 Previous Examples of Blockchain Tickets
	2.2.1 2018 FIFA World Cup
	2.2.2 UEFA EURO 2020

	2.3 Companies making Blockchain Tickets
	2.4 GET Protocol
	2.5 Other Companies
	2.6 Summary

	3 Design
	3.1 Requirements
	3.1.1 Functional
	3.1.1.1 User Stories
	3.1.1.2 Use Case Diagram

	3.1.2 Non-Functional

	3.2 Choice of Blockchain
	3.3 Proposed Solution
	3.4 Metadata
	3.5 Dapp Solution
	3.6 Development Environment

	4 Implementation
	4.1 Smart Contract Setup
	4.1.1 Hardhat.js
	4.1.1.1 Setting up a Blockchain Wallet and Address

	4.1.2

	4.2 Smart Contract Setup
	4.2.1 Smart Contracts Wizard
	4.2.2 Verifying Ownership
	4.2.3 Metadata
	4.2.4 Testing the Smart Contract
	4.2.5 Deploying the Smart Contract

	4.3 Dapp Implementation
	4.3.1 Setting up the Development Environment
	4.3.2 Authenticating the User
	4.3.3 Handling Changes
	4.3.4 Purchasing a Ticket
	4.3.5 Proving Ownership of a Ticket
	4.3.6 Viewing Event Logs
	4.3.7 Deploying the Dapp

	5 Walkthrough
	5.1 Minimal Solution
	5.1.1 Purchasing a ticket
	5.1.2 Validating the Ticket
	5.1.3 Trading the Ticket

	5.2 Dapp Solution
	5.2.1 Purchasing the ticket
	5.2.2 Validating the Ticket
	5.2.3 Trading the Ticket

	6 Evaluation
	6.1 Ease of Use
	6.1.1 Pre-requisites
	6.1.2 Purchasing the ticket
	6.1.3 Trading the ticket
	6.1.4 Verifying the Ticket
	6.1.5 Speed

	6.2 Transaction Costs
	6.2.1 NFT Solution
	6.2.2 Current Solution

	6.3 Development Time

	7 Conclusions and Future Directions
	7.1 Conclusion
	7.2 Future Work
	7.2.1 Use Email as a wallet
	7.2.2 Ticket Purchasing
	7.2.3 Verifying the Ticket
	7.2.4 Regulated Marketplace

	References

